DB54

 西 藏 自 治 区 地 方 标 准

DB54/T 0447—2025

建筑空气能供暖通风技术标准

Building Air Heating and Ventilation Technical Standards

2025-05-10 发布

2025-06-10 实施

西藏自治区市场监督管理局西藏自治区住房和城乡建设厅

联合发布

前言

根据《西藏自治区市场监督管理局办公室关于下达2022年第二批推荐性地方标准制修定计划的通知》,编制组进行了广泛而深入地调查研究,分析了西藏自治区空气能资源禀赋,总结了实践经验,吸收了国内其它地区相关标准编制的先进经验,并在广泛征求意见的基础上,经过反复讨论、修改与完善,制定了本标准。

本标准共分7章,主要内容包括:1总则、2术语和定义3空气能供暖通风系统设计、4监测与控制、5施工安装、6调试、验收与运行维护、7性能测试与评价。

请注意本标准的某些内容可能直接或间接涉及专利,本标准的发布机构不承担识别这些专利的责任。

本标准由西藏自治区住房和城乡建设厅负责管理,西安工程大学负责具体技术内容的解释。在执行过程中如有意见或建议,随时将有关意见和建议反馈给西安工程大学(地址:陕西省西安市碑林区金花南路 19号;邮政编码:710048),以供今后修订时参考。

本标准主编单位: 西安工程大学

中国建筑科学研究院有限公司

西藏自治区建筑勘察设计院

本标准参编单位: 西藏宁算信息科技有限公司

西藏勘察设计与建设科技协会

西安建筑科技大学

西南交通大学

天津城建大学

武警部队工程代建管理办公室

中国建筑西南勘察设计研究院有限公司

中建一局集团第五建筑有限公司

四川省建筑设计研究院有限公司

四川省建设科技协会 重庆美的通用制冷设备有限公司 澳蓝(福建)实业有限公司 西藏日出东方阿康清洁能源有限公司 苏州安瑞可信息科技有限公司

本标准主要起草人员: 黄 翔 陶昌军 王智超 张海江

褚俊杰 吕伟华 王莹莹 马荣江

边巴旺堆 柳现锋 郭春梅 田金星

司鹏飞 孟丽莎 方 磊 郭应军

付韵潮 侯 文 卫鹏云 群 英

王 颖 王 洋 詹其平 陶双平

张井山 顾遵正 张 龙 李 潼

本标准主要审查人员: 戎向阳 田 喆 顾 静 王 谦

李 超 石维彬 张在喜

目 次

1	总则		1
2	术语和	印定义	1
3	空气俞	^也 世暖通风系统设计	4
	3.1	基本规定	4
	3.2	空气源热泵供暖系统设计	5
	3.3	蒸发冷却通风系统设计	12
	3.4	机械通风和自然通风	15
4	监测与	亏控制	15
	4.1	基本规定	
	4.2	空气源热泵供暖系统监测与控制	16
	4.3	蒸发冷却通风系统监测与控制	17
5	施工家	安装	18
	5.1	基本规定	18
	5.2	施工准备	19
	5.3	管道与设备安装	20
	5.4	防腐与绝热	22
6	调试、	验收与运行维护	23
	6.1	基本规定	23
	6.2	系统调试	23
	6.3	竣工验收	26
	6.4	运行维护	27
7	性能测	则试与评价	29
	7.1	基本规定	29
	7.2	空气源热泵供暖系统评价	29
	7.3	蒸发冷却通风系统评价	30
陈	录 A:	西藏自治区不同地区海拔	31
本	标准用	月词说明	34
弓	用标准	挂名录	35
余	文说明	月	38

Contents

1 General provisions·····	1
2 Terms and definitions·····	1
3 Design of air energy heating and ventilation systems······	4
3.1 General requirements·····	4
3.2 Design of air source heat pump heating systems·····	5
3.3 Design of evaporative cooling ventilation systems·····	11
3.4 Mechanical ventilation and natural ventilation	14
4 Monitoring and control·····	15
4.1 General requirements	15
4.2 Monitoring and control of air source heat pump heating system·····	16
4.3 Monitoring and control of evaporative cooling ventilation system·····	17
5 Construction and installation	18
5.1 General requirements	18
5.2 Construction Preparation	19
5.3 Installation of Piping and Equipment·····	20
5.4 Anticorrosion and Insulation	22
6 Commissioning, acceptance and operation and maintenance·····	22
6.1 General requirements	22
6.2 System commissioning····	23
6.3 Completion and acceptance	26
6.4 Operation and Maintenance	27
7 Performance Testing and Evaluation·····	29
7.1 General requirements·····	29
7.2 Evaluation of Air Source Heat Pump Heating System·····	29
7.3 Evaluation of Evaporative Cooling Ventilation System·····	29
Appendix A: Elevation of different areas in Tibet Autonomous Region·····	31
Explanation of wording in this standard······	34
List of quoted standards·····	35
Explanation of Articles·····	38

建筑空气能供暖通风技术标准

1 总则

- 1.0.1 为了贯彻国家节约能源、有效保护环境、减少温室气体排放,实现碳达峰和碳中和的目标,根据西藏自治区的气候特征,开发利用空气能,提高能源利用率,合理降低建筑能耗,制定本标准。
- 1.0.2 本标准将适用于西藏自治区新建、扩建和改建的民用建筑、工业建筑以及农业建筑和构筑物等,利用空气能的空气源热泵供暖系统、热回收系统以及蒸发冷却通风系统等的设计、施工、调试、验收与运行维护、性能测试与评价。
- 1.0.3 工程建设所采用的技术方法和措施是否符合本标准要求由相关责任主体判定。
- 1.0.4 建筑空气能供暖通风系统等的设计、施工、调试、验收、运行维护、性能测试与评价,除应执行本标准外,尚应符合国家、行业和西藏自治区现行有关标准和规范的规定。

2 术语和定义

2.0.1

空气能 air energy

空气中所蕴含的低品位热能。

2.0.2

干空气能 dry air energy

由干空气的干球温度与湿球温度之差驱动水分蒸发吸收热量,在干空气相对湿度趋于饱和的过程中所具有的能量,称为干空气能。

2.0.3

空气源热泵机组 air-source heat pump unit

以空气为低位热源,运用逆卡诺循环原理,由电动机驱动的蒸汽压缩制冷循环,实现能量从低位热源转移至高位热源的设备。

2.0.4

空气源热泵供暖系统 air-source heat pump heating system

由空气源热泵机组、输配系统、供暖末端组成的供暖系统。

2.0.5

户式空气源热泵供暖系统 household air source heat pump heating system

采用空气源热泵制取热水或热风,满足单独用户(含住宅用户、小型商户等)供暖需求的系统。

2.0.6

分布式空气源热泵集中供暖系统 distributed air-source heat pump central heating system

以多台空气源热泵机组群组布置作为分布式热源,集中制备供暖热水,通过循环水泵由热媒管道输送至多个热用户的供暖系统。

2.0.7

空气源热泵热水机组 air source heat pump water heater

以空气为低位热源,制取热水的热泵机组。

2.0.8

空气源热泵热风机 air source heat pump air heater

以空气为低位热源,制取热风的热泵机组。

2.0.9

空气源多联式热泵机组 multi-split air-source heat pump unit

以空气作为低温热源制取热风的多联式热泵机组。

2.0.10 空气源热泵系统制热性能系数 coefficient of performance of air-source heat pump systems (COPsys)

设计及运行工况下,空气源热泵系统的制热量与系统中所有设备耗电量的比值。

2.0.11 空气源热泵机组制热性能系数 coefficient of performance of air source heat pump units (COP)

在规定工况下, 空气源热泵机组的制热量与热泵主机的耗电量的比值。

2.0.12

有效制热量 effective heating capacity

根据冬季供暖室外修正温度,考虑机组结霜、除霜过程引起的制热量损失后的空气源热泵机组制热量。

2.0.13

供暖平衡点温度 heating balance point temperature

建筑的供暖热负荷与热泵机组制热量相等时所对应的室外干球温度。

2.0.14

水力模块 water hydraulic module

在空气源热泵供暖系统中,安装于空气源热泵热水机组与供暖末端之间,包含制冷剂-水换热器、循环水泵、定压装置和过滤器等部件的一体化组件。

2.0.15

连续制热周期 continuous heating cycle

空气源热泵机组在制热运行模式下,从上一次制热开始(除霜结束)到本次除霜结束的一个完整的制热、除霜过程。

2.0.16

制热负荷系数(HLF) heating load factor

空调制热运行时,通过室内温度调节器控制空调系统断续运行1个采暖周期, 其送入室内的热量与等周期连续制热运行送入室内的热量之比。

2.0.17

系统季节能效比 system seasonal energy efficiency ratio

制热季节期间,空气源热泵制热运行时,送入室内的总热量与总耗电量之比。

2.0.18

蒸发式冷气机 evaporative air cooler

一种通过风机使空气与淋水填料层直接接触,把空气的显热传递给水而实现增湿降温,由风机、水循环分布系统、电气控制系统、填料及外壳等部件组成的机组。

2.0.19

蒸发效率 evaporative efficiency

蒸发式冷气机进、出口空气干球温度差与进口空气干、湿球温度差的比值。

2.0.20

能效比(EER) energy efficiency ratio (EER)

在给定工况和规定条件下,空调器制冷运行时,制冷量与有效输入功率之比。

2.0.21

直接蒸发冷却器 direct evaporative cooler

一种利用水的蒸发原理对空气冷却,且制取的冷空气与水直接接触的空气冷却器。

2.0.22

间接蒸发冷却器 indirect evaporative cooler

一种利用水的蒸发原理对空气冷却,且制取的冷空气与水不直接接触的空气冷却器。

2.0.23

复合式蒸发冷却器 composite evaporative cooler

由直接蒸发冷却器和一个或几个间接蒸发冷却器组合而成的空气冷却器。

2.0.24

蒸发式冷凝器 evaporative condenser

利用空气强制循环和喷淋冷却水的蒸发将制冷剂凝结热带走的冷凝器。

2.0.25

费效比 cost-benefit ratio

投入费用与产出效益的比值,或者称为投资回报率,在本标准中包含了空气能供暖通风与空调系统的成本核算、过程控制、运行维护与管理的全生命周期投入与所获得效能的比值。

2.0.26

一次能源利用率 Primary energy ratio

一次能源利用率是指供热总得热量与空气源热泵机组耗电换算一次能源热值的比例。

2.0.27

可再生能源贡献率 Renewable energy contribution rate

从空气中获取的热量占空气源热泵系统总产热量的比例。

3 空气能供暖通风系统设计

3.1 基本规定

3.1.1 采用空气能用于供暖通风系统设计时,应根据当地气候和资源条件结合项目自身需求统筹规划。

- 3.1.2 采用空气能用于供暖通风系统设计时,可根据当地气候以及资源条件、负荷特征、投资规模确定可提供的空气能资源保证率和系统费效比,进行可行性分析。
- 3.1.3 采用空气源热泵间接式系统设计时,应根据当地气候和资源条件选择合适的中介流体、热交换器和储热罐或冷却设备,并能够灵活应对温度变化,提高能效和系统的整体性能。

3.2 空气源热泵供暖系统设计

3.2.1 热负荷计算

- 1 空气源热泵供暖系统的基本热负荷应根据建筑物散热量和得热量计算确定。
- 2 空气源热泵供暖热负荷计算时应考虑间歇运行和户间传热等因素,对基本热负荷进行修正。
 - 3 房间供暖热负荷应按下列公式计算:

$$Q_r = Q_j + Q_h + Q_x \tag{3-1}$$

$$Q_h = q_h \times A \tag{3-2}$$

$$Q_x = \alpha \times Q_j \tag{3-3}$$

式中:

- Q_r 一供暖热负荷(W);
- O;一基本热负荷(W):
- Q_h 一户间传热附加耗热量(W),按如下方法确定:
 - (1) 无邻户的独立房间 $Q_h=0$;
- (2) 联体别墅等,两户之间仅有个别房间存在共用内墙时,可仅计算该房间的内墙传热量 O_h ,其它房间 O_h =0;
 - (3) 多层和高层建筑 O_h 按式 (3-2) 计算;
 - O_x 一房间间歇供暖附加耗热量(W);
- q_h —房间单位面积平均房间传热附加耗热量(W/m^2),多层和高层建筑可取 q_h =(5 \sim 7) W/m^2 ;
 - A—房间使用面积,即围护结构内表面包围的房间地面面积 (m^2) ;
 - α —考虑间歇供暖的附加系数,房间可取 $0.3\sim0.4$ 。
- (4) 局部辐射供暖系统的热负荷应按全面辐射供暖的热负荷乘以表 3-1 的 计算系数的方法确定。

表 3-1 局部辐射供暖系统热负荷的计算系数

供暖区面积与房间面 积的比值 <i>K</i> [©]	<i>K</i> ≥0.75	K=0.55	K=0.40	K=0.25	<i>K</i> ≤0.20
计算系数	1.00	0.72	0.54	0.38	0.30

注: ①: 面积比值区间取值可按线性差值法取值。

4 此部分计算同样适用于西藏自治区地方标准《建筑供热地热能利用技术标准》。

3.2.2 空气源热泵机组选型

1 根据供暖系统设计热负荷和空气源热泵机组在额定工况制热量进行选型,同时考虑空气源热泵在不同温度、不同海拔高度下的性能变化因素,空气源热泵不同海拔下的性能修正系数参考值见表 3-2。

海拔	-20℃	-12℃	-7℃	-6°C	0℃	2℃	6℃	7℃	12℃
0	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
500	0.980	0.977	0.976	0.976	0.974	0.974	0.973	0.972	0.971
1000	0.959	0.955	0.952	0.952	0.949	0.948	0.945	0.945	0.942
1500	0.939	0.933	0.929	0.928	0.923	0.922	0.919	0.918	0.914
2000	0.919	0.911	0.906	0.905	0.899	0.897	0.893	0.892	0.887
2500	0.900	0.890	0.883	0.882	0.874	0.872	0.867	0.866	0.859
3000	0.880	0.868	0.861	0.859	0.850	0.847	0.842	0.840	0.833
3500	0.861	0.847	0.839	0.837	0.827	0.823	0.817	0.815	0.807
4000	0.842	0.826	0.817	0.815	0.803	0.800	0.792	0.790	0.781
4500	0.823	0.806	0.795	0.793	0.781	0.776	0.768	0.766	0.756
5000	0.804	0.785	0.774	0.772	0.758	0.754	0.745	0.743	0.732

表 3-2 性能修正系数 *Q/Q*₀ 参考值(ASHP 出水温度 45℃)

- 2 空气源热泵系统相关设备应根据《特殊环境条件 高原电工电子产品》 GB/T 20626 的要求采取相应防护或修正措施,以确保设备在高原地区安全、正常使用。
- 3 户式空气源热泵供暖系统机组采用低环境温度热水机组时,应符合下列规定:
- (1)产品应符合现行国家标准《低环境温度空气源热泵(冷水)机组第2部分:户用及类似用途的热泵(冷水)机组》GB/T 25127.2 的规定。

- (2) 应选用具有变频调节功能的机组;
- (3) 应选用空气源热泵分体式机组。
- 4 采用低环境温度热风机组时,产品应符合现行国家标准《低环境温度空气源多联式热泵(空调)机组》GB/T 25857 或现行行业标准《低温空气源热泵热风机》JB/T 13573 的规定。
- 5 户式空气源热泵供暖系统机组采用低环境温度多联式热风机组时,应符合下列规定:
 - (1) 应选用具有变频调节功能的机组;
 - (2) 应根据室内、外机组之间的连接管长和高差对制热量进行修正。
- 6 空气源热泵机组室外机应安装在气流通畅的地方,中心区机组的吸风温度不应低于环温 5℃,集中供暖系统应合理排布室外机阵列及其间距,必要时可分散布置,避免出现冷岛现象和局部负压过大,造成蒸发器温度低于环境温度和吸入风量减少,影响出力。

3.2.3 辅助热源

- 1 当采用平衡点温度选取空气源热泵机组容量,且供暖室外计算温度小于平 衡点温度时,应设置辅助热源。
 - 2 辅助热源可采用电热装置,在系统中的安装位置应符合下列规定:
 - (1) 低环境温度热水机组的电热装置应安装在供水管路或缓冲水箱内:
 - (2) 低环境温度热风机组的电热装置官安装在室内机上。
 - 3 辅助热源也可采用独立的分体式电热供暖装置。
- 4 在大型系统中空气源热泵的辅助热源通常可以选择燃气锅炉、电加热器和地源热泵。
- 5 在小型系统,辅助热源通常可以选择电加热器和小型燃气加热器。选择辅助热源时,应兼顾经济性和能效。

3.2.4 输配系统

- 1 水力模块应设置在环境温度不小于 5℃的室内辅助房间,并应满足检修、排水的要求。
 - 2 水系统应进行水力计算和水力平衡计算。

循环水泵选型应根据水力计算结果确定,并符合下列规定:

- (1) 应满足系统设计供暖工况所需流量和扬程的要求;
- (2) 对于添加防冻液的系统,应根据防冻液的浓度和性质对系统循环流量

和阻力进行修正;

- (3) 在噪音控制严格的区域应选用屏蔽式水泵;
- 3 供暖系统不能满足化霜、除霜期间室内温度稳定时,应设置缓冲水箱。缓冲水箱应符合下列要求:
 - (1) 应根据供暖系统的要求和空气源热泵机组性能确定水箱容量;
 - (2) 应采用闭式水箱;
 - (3) 宜安装在回水管上。
 - 4 水管路布置应符合下列规定:
 - (1) 宜采用带有阻氧层的塑料或不锈钢等材质的管道;
- (2) 应采取保温措施,保温材料及保温层厚度应符合现行国家标准《民用建筑供暖通风与空气调节设计规范》GB 50736 的有关规定。
 - (3) 膨胀罐应设置在循环水泵吸水管段;
 - (4) 在系统补水管路中, 宜安装带有防漏水保护功能的自动补水装置:
 - (5) 回水总管上应设置补水阀;
 - (6) 供、回水管上应设置关断阀门,并应采用柔性连接管;
 - (7) 回水管上应设置过滤器;
 - (8) 水管路应在最高点设置排气阀,最低点安装泄水阀:

3.2.5 末端设计

1. 低温辐射供暖末端

- 1空气源热泵供暖系统室内末端宜采用低温辐射供暖末端。
- 2 辐射供暖系统的末端设计、设备材料选择和室温控制要求,应符合现行行业标准《辐射供暖供冷技术规程》JGJ142 的有关规定。
 - 3 采用地面辐射供暖时,房间地表面平均温度宜按表 3-3 设计。

环境条件	适宜温度/℃	最高限值/℃	
人员长期停留区域	25-27	29	
人员短期停留区域	28-30	32	
无人员停留区域	35~40	42	

表 3-3 地面辐射供暖地表面平均温度

4 辐射供暖系统供水温度不应大于 45℃,且供回水温差不宜小于 5℃,不宜大于 10℃。

- 5 供暖地面单位面积散热量应考虑家具遮挡对地面散热的影响。
- 6 供暖地面可采用混凝土填充式、预制沟槽保温板式、水泥砂浆预制填充板 式和预制轻薄供暖板地面。
 - 7地面辐射供暖系统的地面构造,应符合下列规定:
- (1) 供暖地面的构造做法应根据其设置位置和加热部件的类型确定,供暖地面的构造应由下列全部或部分组成:
 - 1) 楼板或与土壤相邻的地面
 - 2) 防潮层(对与土壤相邻地面)
 - 3) 绝热层
 - 4) 加热部件
 - 5) 填充层
 - 6)隔离层(对潮湿房间)
 - 7) 面层
- (2) 当与土壤接触的底层地面作为辐射地面时,应设置绝热层。设置绝热层时,绝热层与土壤之间应设置防潮层;
- (3)潮湿房间的混凝土填充式供暖地面的填充层上、预制沟槽保温板或预制轻薄供暖板供暖地面的面层上,应设置隔离层。
 - 8供暖地面面层宜采用导热系数小于 0.05(m²·K)/W 的材料。
 - 9 混凝土填充式供暖地面的加热部件, 其填充层和面层构造应符合下列规定:
 - (1) 豆石混凝土填充层上部应根据面层的需要铺设找平层:
 - (2) 地板面层时,在保温板和加热管之上应铺设一层均热层;
- 10 预制沟槽保温板辐射供暖地面直接铺设木地板面层时,在保温板和加热管之上应铺设一层均热层。
 - 11 房间内未铺设供暖板的部位和敷设输配管的部位应铺设填充板。
- 12 采用预制沟槽保温板时,分水器、集水器与加热区域之间的连接管,应敷设在预制沟槽保温板中。
- 13 当地面荷载大于供暖地面的承载能力时,应由土建设计人员采取加固措施。
 - 14 地面辐射供暖系统的加热管、分集水器和环路设置应符合下列规定:
- (1)供暖地面加热管的材质和壁厚的选择,应根据工程的耐久年限、管材的性能以及系统的运行水温和工作压力等条件确定;

- (2) 加热管内的水流速度不宜小于 0.25m/s, 且不大于 0.6m/s;
- (3)加热管敷设可采用回折型、平行型、双平行型等布管形式,绕行时不得小于管材的最小弯曲半径。加热管宜采用等间距布置,靠近外墙的间距也可适当减少。对于既有房间增设供暖设施的房间,在安放落地家居的位置应减少加热管的敷设:
- (4) 当设计低温地面辐射供暖系统时,宜按主要房间划分供暖环路。各分支环路的长度宜接近,各分支环路加热管长度不宜大于120m;
- (5) 分水器、集水器分支环路不宜大于 8 路, 分、集水器断面流速不宜大于 0.8m/s:
- (6)分水器前应设置过滤器;分水器的总进水管与集水器的总出水管之间 宜设置清洗供暖系统时使用的旁通管,旁通管上应设置阀门,且管径不应小于连 接分水器和集水器的进出口总管管径。

2. 散热器供暖末端

- 1 散热器供暖末端宜用于分散式空气源热泵供暖系统,宜采用热水作为热媒。
- 2 散热器供暖系统供水温度不应高于空气源热泵机组制热温度,在热泵机组经济运行范围内尽量大温差运行,散热器集中供暖系统供回水温差应由设计确定合理的温度和温差。
- 3 散热器的工作压力应根据供暖系统的压力要求确定,同时应符合现行国家标准《民用建筑供暖通风与空气调节设计规范》GB 50736 和国家现行有关产品标准的规定。
 - 4 散热器选择和布置应符合下列规定:
 - (1) 宜选择轻质的钢制、铝制或铜铝复合散热器,不宜采用铸铁散热器;
- (2) 散热器宜布置在外窗台下,也可按使用要求布置在外墙其他部位或内墙侧;
- (3) 幼儿园、老年人和特殊功能要求的建筑的散热器必须安装防护罩,其他建筑的散热器应明装。
 - (4) 散热器连接支管应安装恒温阀。
- (5)散热器应选择时,户式空气源热泵供暖系统设计供水温度不宜大于45℃,供回水温差不宜大于5℃;分布式空气源热泵集中供暖系统设计供水温度不宜小于45℃,供回水温差不宜小于5℃。
- (6) 散热器数量的确定应符合现行国家标准《民用建筑供暖通风与空气调节设计规范》GB 50736 中的有关规定,并根据散热器连接形式、安装方式、组

装片数、热水流量和进出口温度等因素进行修正。

(7) 当供暖系统采用非保温管道明设时,应计算管道的散热量对散热器面积的修正。

3. 风机盘管供暖末端

- 1下列供暖房间宜采用风机盘管供暖:
- (1) 有供暖和空调需求;
- (2) 有快速升温要求:
- (3) 间歇供暖。
- 2 风机盘管规格应根据房间热负荷、设计供回水温度等确定,性能参数应符合现行国家标《风机盘管机组》GB/T 19232 中有关规定。风机盘管供热额定值可按《风机盘管机组》GB/T 19232 计算,宜按风机盘管中档风量性能进行选型设计。
- 3以供暖为主的风机盘管宜采用立式落地布置;当采取顶棚安装时,应采取必要措施优化室内气流组织,减小温度梯度。

3.2.6 电气系统

- 1 供配电系统设计应符合下列规定:
- (1) 机组和辅助热源官分别采用独立回路供电;
- (2) 配电箱(柜)设在室外时应选择防护等级 IP54 以上的室外型箱(柜)体。
- 2线路敷设及箱盘配线应符合下列规定:
- (1) 布线用导管宜采用金属导管,通讯及信号传输线路应与交流电源线路分开敷设;
- (2) 配电导体应采用铜芯电缆或电线,配电导体选用应符合现行国家标准《民用建筑电气设计标准》GB 51348 的有关规定。
 - 3 电气系统安全保护应符合下列规定:
- (1) 空气源热泵供暖系统配电线路应设置短路保护、过负荷保护、接地故障保护、过电压及欠电压保护等装置;
- (2) 空气源热泵机组、水泵、风机应装设漏电保护、相间短路保护和接地 故障保护,并应根据具体情况设置过负荷、断相或低电压保护等安全保护措施;
- (3)辅助热源应设置漏电保护、相间短路保护和接地故障保护等安全保护措施。

3.3 蒸发冷却通风系统设计

- 3.3.1 进行蒸发冷却通风系统设计时,应根据典型气象年全年室外空气状态参数、空气质量、送风状态参数、场所加(除)湿量等要求,对各种蒸发冷却应用方式进行技术经济比较分析。
- 3.3.2 在空气能充裕的地方,其空气质量、送风状态参数满足要求时,空气处理 官采用直接蒸发冷却通风方式。
- 3.3.3 蒸发冷却通风系统在不同地区设计工况下的蒸发冷却效率不宜小于表 3-4 推荐值。

□ 	湿球温度	直接蒸发	间接蒸发]接蒸发 地区		
区域	一一一	冷却效率	冷却效率	昌都地区、林芝地区 拉萨、日喀则地区		
	15°C≤t _s <23°C	85%	65%	昌都地区、林芝地区		
干燥地区	13°C≤ <i>t</i> s<15°C	90%	70%	拉萨、日喀则地区		
下深地区	4 < 12 °C	050/	750/	那曲地区、阿里地区、		
	$t_{\rm s} < 13^{\circ}{\rm C}$	95%	75% 山南地区			

表 3-4 不同地区蒸发冷却效率推荐表

- 3.3.4 蒸发冷却定风量系统在民用建筑中不应采用机器露点温度送风,不宜设置 再热装置对空气做升温处理;
- 3.3.5 间接蒸发冷却机组应根据室外空气的湿球温度以及干球温度的变化,切换运行模式;机组一次空气和二次空气进风风机应具备变频调节和故障备用功能, 宜选用多点矩阵式离心风机。
- 3.3.6 根据冷源的不同,空气冷却装置的选择,应符合下列规定:
- 1 采用循环水蒸发冷却或天然冷源时,宜采用直接蒸发冷却器、间接蒸发冷却器或其他空气冷却器;,水质应符合国家现行有关标准的规定。
 - 2 采用人工冷源时, 宜采用表面式空气冷却器或直接膨胀式空气冷却器;
- 3.3.7 直接蒸发冷却通风机组应具有可靠的空气过滤装置,应设置粗效过滤器和中效过滤器,必要时可设置亚高效空气过滤器或化学过滤装置。
- 3.3.8 采用直接蒸发冷却通风系统时,应对新风的温度、相对湿度、有害物浓度、 空气含尘浓度等参数进行监测和控制。
- 3.3.9 设有新风系统的空调房,应进行风量平衡计算,以保证室内外的压差要求,当压差过大时,应设置排风口,避免造成新风无法正常进入使用场所的情况。
- 3.3.10 蒸发冷却机组结构与布置应符合下列规定:
 - 1室外布置的机组应采取防风、防雨、防冻、防强紫外线等耐候性措施:

- 2蒸发冷却通风机组和蒸发冷却冷水机组的二次排风处宜设置挡水板,且不应有明显漂水、带水现象;
- 3 应设排水口、溢水口,排水、溢水应畅通,且应无渗漏和从水箱中直接溢水现象:
 - 4水箱排水管应定期排水;
 - 5排风应顺畅,内部一、二次空气不应出现短路现象。
- 3.3.11 蒸发冷却系统用填料应符合下列规定:
 - 1应具有耐腐蚀性;
 - 2 完全浸湿后不应有材料塌陷、出现孔洞等缺陷;
 - 3 使用中,不应出现未被水流过的干带和填料内外表面有集中水流现象;
 - 4 经振动试验后,不得有脱胶、撕裂、从箱体组件移位或其他的损坏;
 - 5 金属填料表面应进行除锈、防腐和亲水性处理。
- 3.3.12 蒸发冷却机组应具有在高海拔地区使用的性能,要求如下:

为保证机组在不同高海拔地区使用的质量风量不低于在机组在额定工况海拔下的质量风量,由公式 3-4 计算得到不同海拔地区机组的体积风量 V_I 。

$$V_1 = \frac{\rho_2 V_2}{\rho_1} \tag{3-4}$$

式中, V_I —机组应用地海拔H下使用计算出来的体积风量, m^3/h ;

 ρ_I —机组应用地海拔 H 使用下的空气密度, kg/m^3 ,通过公式(3-5)中进行计算得到;

 V_2 —机组额定工况海拔下的体积风量, \mathbf{m}^3/\mathbf{h} ;

 ρ_2 —机组在额定工况海拔下的空气密度, kg/m^3 ,通过公式(3-5)进行计算得到:

2 按照国标《风电场风能资源评估方法》GB/T 18710 计算出空气密度值:

$$\rho = \frac{353.05}{T} \times e^{-0.034 \times \frac{z}{T}}$$
 (3-5)

式中, ρ —空气的密度, kg/m^3 ;

z—海拔高度,m;

T—年平均开氏绝对气温, T=273.16+t;

t—摄氏气温。

3.3.13 蒸发式冷凝器的选择应符合下列规定:

1蒸发式冷凝器在设计选型时,应充分考虑当地水质、环境对其产生的影响,设计时应根据设备的结构及材质考虑必要的换热效率污垢影响系数;

- 2蒸发式冷凝器的类型、构造、材质应与空调系统的使用要求相适应,当选用钢管或不锈钢板作为换热材料时,板厚不能小于 2.0mm;
 - 3 应选择效率高、结构紧凑、使用寿命长、便于维护的产品;
- 4 应充分考虑防结垢措施,水系统和风系统设置过滤装置,应定期进行除垢清洗,宜在排风口处设置挡水板;
 - 5寒冷和严寒地区应对蒸发式冷凝器采取防冻措施,不使用时应放空。
- 3.3.14 蒸发冷却通风系统风系统设计应符合下列规定:
- 1 防火要求应符合现行国家标准《消防设施通用规范》GB55036 及《建筑防火通用规范》GB 55037 等有关规定;
- 2制作安装应符合现行行业标准《通风管道技术规程》JGJ 141 的有关规定。
- 3.3.15 蒸发冷却系统工程水系统应符合下列规定
- 1 管道和管件的材质、规格、型号以及焊接材料的选用,应根据设计文件确定:
- 2 补水、排水、溢水管应具有防腐性能,宜采用塑料管或热镀锌钢管或不锈钢管。
- 3.3.16 蒸发冷却系统水质应符合现行国家标准《采暖空调系统水质》GB/T 29044 的有关规定。
- 3.3.17 凡与被冷却空气直接接触的水质均应符合卫生要求。空气冷却采用天然冷源时,应符合下列规定:
 - 1 水的温度、硬度等符合使用要求:
 - 2 地表水使用过后的回水予以再利用:
 - 3 使用过后的地下水应全部回灌到同一含水层,且不得造成污染。
 - 3.3.18 蒸发冷却循环水补充水水源选择宜符合下列要求:
 - 1 开式循环水系统补水可采用工业水、生活水;
 - 2 闭式循环水系统补水可采用化学除盐水、软化水和生活水。
 - 3.3.19 蒸发冷却循环水水处理应满足以下要求:
- 1 开式蒸发冷却循环水系统中应设置水处理装置,且宜设置在循环水泵或蒸发冷却冷水机组的入口管道前端;
- 2 闭式蒸发冷却循环水系统,应定期检测系统水质,若不符合蒸发冷却循环水水质要求,应采取水质处理措施。

3.4 机械通风和自然通风

3.4.1 机械通风

- 1 机械送风系统进风口的位置,应符合下列规定:
- (1) 应设在室外空气较清洁的地点;
- (2) 应避免进风、排风短路;
- (3) 进风口的下缘距室外地坪不宜小于 2m, 当设在绿化地带时, 不宜小于 1m:
- 2选择机械送风系统的空气加热器时,室外空气计算参数应采用供暖室外计算温度;当其用于补偿全面排风耗热量时,应采用冬季通风室外计算温度。

3.4.2 自然通风

- 1 自然通风应采用阻力系数小、噪声低、易于操作和维修的进排风口或窗扇。 严寒寒冷地区的进排风口还应考虑保温措施。
- 2 夏季自然通风用的进风口,其下缘距室内地面的高度不宜大于 1.2m。自然通风进风口应远离污染源 3m 以上;冬季自然通风用的进风口,当其下缘距室内地面的高度小于 4m 时,宜采取防止冷风吹向人员活动区的措施
- 3 自然通风设计时,宜进行自然通风潜力分析,依据气候条件确定自然通风策略并优化相关设计。
 - 4 采用自然通风的建筑,自然通风量的计算应同时考虑热压以及风压的作用。

4 监测与控制

4.1 基本规定

- 4.1.1 空气能供暖通风系统的监测与控制系统的功能宜包括运行工况与设备状态显示、运行参数监测、自动调节与控制、工况自动转换、设备连锁、自动保护与报警、能量计量以及中央监控与管理等。供暖、通风系统监测与控制系统的设计应根据所利用建筑物的规模、功能、依据标准、系统类型、设备运行时间以及生产工艺要求等因素,通过综合考虑与技术经济比较确定。
- 4.1.2 反映设备和管道系统在启停、运行及事故处理过程中的安全和经济运行的参数,应进行监测;用于设备和系统主要性能计算和经济分析所需要的参数,宜进行监测。

- 4.1.3 当生产工艺需要对供暖、通风设备进行监测与控制时,应满足生产工艺要求以及节能要求。
- 4.1.4 冬季存在冻结可能的设备,在设有防冻设施时,应设防冻保护控制。
- 4.1.5 监测仪表的选择和设置应与报警、自动控制、现场监测和中央监测等系统综合考虑,不宜重复设置,就地监测仪表应设在便于观察的地点。
- 4.1.6 监控系统测量元件的安装位置应符合下列要求:
 - 1 现场测量仪表应安装在易观察、检修和操作处;
- 2 测量室内环境参数的仪表应设在不受局部热源影响、空气流通的地点,避免装设在经常开启的门窗旁边;
 - 3 测量管道系统运行参数的测量元件应安装在直管段上;
 - 4 测量元件设在风管内时,应装设在气流稳定段的截面中心;
 - 5 安装在易燃易爆区域内的测量元件应采用防爆型。
- 4.1.7 设计设备监控系统时,应根据监控功能需求设置监控点,设备监控系统的服务功能应与管理模式相适应。
- 4.1.8 设备监控系统应具备系统自诊断和故障报警功能;当工程有智能建筑集成要求时,监控系统应提供建筑设备管理系统通信接口。

4.2 空气源热泵供暖系统监测与控制

- 4.2.1 空气源热泵集中供暖系统应设置自动监控系统,且应符合现行国家标准《民用建筑电气设计标准》GB 51348 的有关规定。
- 4.2.2 空气源热泵供暖系统的自动控制系统设计应包括下列内容:
 - 1控制方案或策略:
 - 2 监测和控制点表;
 - 3 控制器、传感器、执行器以及线缆的选型、位置以及安装要求;
 - 4 电控调节阀的选型及流通能力计算:
 - 5 控制点参数设计值和工况转换边界条件:
 - 6 空气源热泵热水机组防冻报警和自动保护:
 - 7空气源热泵热风机通讯接口应采用标准通讯协议。
- 4.2.3 分布式空气源热泵集中供暖系统自动监测系统应包括下列内容:
 - 1室外空气温度,必要时监测室外空气相对湿度;
 - 2室内空气温度;
 - 3 供暖系统供、回水温度;
 - 4 重要节点的供、回水压力:

- 5 供热量:
- 6 电功率与耗电量;
- 7空气源热泵机组、循环水泵、辅助热源、调节装置等设备运行状态、故障状态和手/自动状态参数。
- 4.2.4 空气源热泵供暖系统的节能控制应包括下列内容:,且应符合《建筑节能与可再生能源利用通用规范》GB55015 的要求
- 1系统可根据室外气象参数、供暖末端供热能力和室内需求负荷进行供水(或回水)温度设定值的再设定;
- 2 系统和空气源热泵机组均可按使用时间进行定时启停控制,并对启停时间进行优化调整;
 - 3 空气源热泵应采用除霜自控策略;
 - 4 风机盘管可采用电动水阀和风速相结合的控制方式。
- 4.2.5 户式空气源热泵供暖系统监测与控制系统
- 1 温度监测与控制:监测室内外温度,根据设定的温度范围控制供暖系统的运行;
- 2 湿度监测与控制:监测室内外湿度,根据设定的湿度范围控制供暖系统的运行:
- 3 空气质量监测与控制:设置空气系统时,应监测室内空气质量,包括二氧 化碳浓度、PM2.5 等,根据空气质量控制室内空气循环和新风系统:
- 4 能耗监测与控制:监测供暖系统的能耗情况,根据能耗情况调整供暖设备的运行模式,以实现节能目标:
- 5 故障监测与报警:监测供暖系统的运行状态,及时发现故障并报警,以保证系统的安全运行。

4.3 蒸发冷却通风系统监测与控制

- 4.3.1 蒸发冷却通风系统规模大、设备台数多且相关联部分相距较远时,应采用集中监控系统。
- 4.3.2 蒸发冷却通风控制系统官包括以下功能:
 - 1室内风机、室外风机、水泵和辅助机械制冷装置纳入控制系统:
 - 2 控制系统宜采用自动控制。
 - 3 蒸发冷却通风系统宜对以下参数进行监测:
 - (1) 室内外空气温度、相对湿度;
 - (2) 介质的进出口温度、压力:

- (3) 空气过滤器压差;
- (4) 风机、水泵设备运行状态及风阀开度;
- (5) 补水装置运行状态;
- (6) 喷淋水水位、水质。
- 4.3.3 蒸发冷却通风空调系统中对于水质监测应符合下列规定:

蒸发冷却循环水系统应设置水质监测取样装置,定期对循环水的水质进行化验分析;

水质监测参数宜根据蒸发冷却空调系统使用性质,水质监测参数包含以下内容:

pH 值;

浊度;

电导率 (25℃);

总硬度(以 CaCO₃ 计);

总碱度(以 CaCO₃ 计);

Cl(以Cl计);

总铁(以 Fe);

SO₄²⁻(以SO₄²⁻计);

氨氮;

COD:

直接蒸发机组增加菌落总数:

间接蒸发机组增加异氧菌总数,磷酸盐(以 P 计)、有机磷。

- 4.3.4 应用于直接蒸发冷却通风机组的循环水质直接影响通风房间内的空气质量, 因此应对菌落总数和传播细菌、危害人身健康的指标进行监测、化验,避免造成 影响范围内人员身体健康。
- 4.3.5 间接蒸发冷却机组应对一次空气和二次空气进风风机的频率以及机组的故障情况进行监测与控制。

5 施工安装

5.1 基本规定

5.1.1 工程施工应符合设计要求。招标采购的设备应满足设计文件及招标文件的主要技术参数要求。当不相符时,必须征得设计单位、招标技术文件编制方及业

主的同意。严禁安装使用未经确认的、不符合技术文件要求的材料和设备进行安装。

- 5.1.2 工程使用的主要材料和设备,均应验收"出厂合格证、生产许可证及产品质量检测报告并保存进场验收和质量验收记录"。
- 5.1.3 工程采用的材料、构件和设备,应在施工进场时进行随机抽样复验,复验 应为见证取样检验。当复验结果不合格时,工程施工中不得使用。
- 5.1.4 空气源热泵机组的安装应符合现行国家标准《制冷设备、空气分离设备安装工程施工及验收规范》GB 50274 的有关规定。空气源热泵室外主机、多联机直接冷凝式室内机和制冷剂管道的施工安装应符合现行行业标准《多联机空调系统工程技术规程》JGJ 174 的有关规定。
- 5.1.5 电气系统的施工安装除应符合本规程规定外,还应符合现行国家标准《建筑电气工程施工质量验收规范》GB 50303 的有关规定。
- 5.1.6 室内末端系统的安装应符合现行国家标准《建筑给水排水及采暖工程施工质量验收规范》GB 50242 和《通风与空调工程施工规范》GB 50738 的有关规定。辐射供暖系统的施工安装应符合现行行业标准《辐射供暖供冷技术规程》JGJ 142 的有关规定。
- 5.1.7 工程的施工,除应执行本规范外,尚应符合现行国家标准《通风与空调工程施工规范》GB 50738、《通风与空调工程施工质量验收规范》GB 50243 与、《建筑给水排水及采暖工程施工质量验收规范》GB 50242、《建筑节能工程施工质量验收标准》GB50411、《建筑工程绿色施工规范》GB/T 50905 等国家及地方相关标准的有关规定。

5.2 施工准备

- 5.2.1 空气源热泵供暖及蒸发冷却通风系统施工前应具备下列条件:
 - 1设计施工图纸和有关技术文件齐全:
 - 2 完成施工方案和施工组织设计审批,并已完成技术交底;
 - 3 具有相关专业技术人员;
 - 4 施工现场具有供水、供电条件,有储放材料的临时设施:
 - 5 具备设备安装基础并已验收。
- 5.2.2 施工图图纸会审应符合下列规定:
- 1 由建设单位组织设计单位、施工单位和监理单位,共同对施工图进行会审, 主要检查工程设计图纸的完整性、合理性和可行性;
 - 2 对照检查施工图,对设备、预留套管、管线及控制面板的安装位置和标高

进行复核,发现问题后应协调修改;

- 3 图纸会审应形成会审记录,并由各相关单位会签并整理归档,涉及需要修 改图纸的部分,应由设计单位出具设计变更。
- 5.2.3 施工图技术交底应结合具体工程内容、关键工序和施工难点进行交底。技术交底应形成交底记录,经相关各方共同签字并整理归档。
- 5.2.4 施工图技术交底应包含下列内容:
- 1 系统原理、设备运输与吊装、室外主机安装、水箱安装、水力模块安装、供暖末端安装、管道与附件安装、电气安装、管道及设备防护与保温和系统联合试运转调试的质量标准、操作要点、注意事项等;
- 2 现场临时用电安全技术交底、冬雨季施工措施技术交底和安全文明施工交底等。
- 5.2.5 安装施工之前,施工单位技术及现场负责人员应进行现场勘察。现场勘察 应细致、全面,如有异议,应及时与有关单位沟通确认。现场勘察应包括下列内 容:
 - 1 施工图纸与现场状况是否一致;
- 2 明确设备基础的安装位置,室内末端的安装位置,管道的走向及管道预埋套管的位置:
 - 3 现场临时用水、用电及其它设施、场地是否具备施工条件。
- 5.2.6 施工组织设计应由施工单位编写,建设单位或监理单位审核。主要内容应包括:工程概况、施工工期网络计划、现场施工组织及管理、施工方案、质量保证措施、安全保证措施、环境保护措施、机具和材料存放措施、施工与管理人员现场办公与生活等施工计划。
- 5.2.7 空气源热泵机组及其施工所用的管材、管件及防冻液的运输、存放应采取 保护措施。
- 5.2.8 蒸发冷却通风系统工程施工与安装质量应符合现行国家标准《通风与空调工程施工质量验收规范》GB 50243 和《建筑节能工程施工质量验收标准》CB50411的有关规定。

5.3 管道与设备安装

5.3.1 空气源热泵供暖系统安装

- 5.3.1.1 空气源热泵室外机组安装应符合下列规定:
 - 1 机组安装间距应确保进风与排风通畅和不发生明显的气流短路;

- 2设备应安装在经过设计、有足够强度的水平基础之上,基础尺寸、预埋件等条件符合安装要求;
- 3屋面上的设备基础应设置在结构楼板上,基础顶面高于屋面应不小于500mm;
 - 4室外机组安装时,应采取隔振措施;
 - 5室外机组、配电箱(柜)、水泵、风机等机电设备应设置室外防护措施;
 - 6 机组安装位置应具有良好的排水条件。
- 5.3.1.2 管道和管线穿越建筑物外围护结构时,应按建筑防水、节能要求采取相应措施,室外敷设的电气管线、接线盒、出线口均应采取做防水防护处理措施。
- 5.3.1.3 设置在室内的水力模块、水箱、水泵等设备的安装位置应符合设计要求,并应符合下列规定:
 - 1 挂墙安装时,墙体和连接件应能够承受设备运行重量,连接应牢固可靠;
 - 2 热水水箱和底座间应采取绝热措施;
 - 3 有振动的设备应采取隔振措施。
- 5.3.1.4 室内管道敷设应符合下列规定:
 - 1 管道接头不应埋设在墙体和地面之内;
 - 2 管道外包保温装饰材料时,应便于检修;
 - 3 管件与管材焊接处,应进行有效的防腐处理。
- 5.3.1.5 空气源热泵供暖系统管网、制冷剂管道、膨胀水箱等在室外或不供暖房间设置时,均应采取保温措施。

5.3.2 蒸发冷却通风系统安装

- 5.3.2.1 应将蒸发冷却设备作为一个整体进行安装,配套的风管系统应满足《通风与空调工程施工质量验收规范》GB 50243 和《通风管道技术规程》JGJ 141 的有关规定。
- 5.3.2.2 蒸发冷却通风设备安装前,应根据设计要求,完成空调设备基座的制作与安装。
- 5.3.2.3 蒸发冷却通风的安装位置应符合设计要求,还应满足冷却风循环空间的要求。
- 5.3.2.4 蒸发冷却设备进、排风口应配防护网或其他安全措施,可由设备整体配套或由现场配套,当由现场配套时,风口规格、位置及方向应满足设备进风或排风的需求,不得造成进、排风气流短路,当需要配套风管时,其安装位置、支撑位置应符合设备的安装要求和通风管道安装规定。

- 5.3.2.5 安装在室外的设备及风管应根据工程所在地气候条件采取保温、防冻、隔热或防雨、防紫外线等措施。
- 5.3.2.6 现场装配式蒸发冷却机组安装时应符合下列要求:
 - 1 确认现场基础尺寸、预埋件等条件符合安装要求;
- 2 安装时应保障气流、水流方向正确,各功能段应按顺序组装并连接牢固可靠:
- 3 固定风管时,不宜在风管连接处、风阀安装处及传感器的安装点设置固定支架:
 - 4风管相关部件安装应牢固可靠,安装完成后应进行相关工序检验;
- 5 各功能段的组装应符合设计规定的顺序和要求,且各功能段之间的连接应严密,整体应平整;
 - 6 机组的框架应具有耐腐蚀及防腐能力,且无扭曲、变形现象;
- 7 喷水管和喷嘴的排列、规格、填料等直接蒸发冷却器部件的安装位置、间距、角度及方向应符合产品安装说明的要求,且连接应牢固紧密:
- 8 水箱及与水接触的材料应具有耐腐蚀性和防腐能力,且应无扭曲、变形和 渗漏:
 - 9间接换热器内部之间通道的密封应严密,不应出现串漏风及串漏水的现象;
- 10 空气过滤器应清洁,安装应平整牢固,方向正确,过滤器滤料与框架、 过滤器框架与机组框架之间应严密且无穿透缝:
- 11 机组表冷式换热器、加热器及管路应在最高点处及所有可能积聚空气的高点处设置排气阀,在最低点处应设置排水点及排水阀:
- 12 机组安装完毕应做漏风量检测,漏风量应符合现行国家标准《组合式空调机组》GB/T 14294 的有关规定。

5.4 防腐与绝热

- 5.4.1 室外设备、管道、阀门附件等应根据有防腐、绝热、防紫外线及其他它必要的保护措施。
- 5.4.2 当采用电伴热防冻措施时,应配套具有超温报警功能及实时状态监测功能的监控设施。
- 5.4.3 室外设备的防腐、绝热材料应采用难燃材质,且应优先采用闭孔材料。
- 5.4.4 风管、水管的防腐处理应符合《工业大设备及管道防腐蚀工程施工规范》 GB 50726 和《工业设备及管道防腐蚀工程施工质量验收规范》 GB 50727 的有关规定执行。

6 调试、验收与运行维护

6.1 基本规定

- 6.1.1 空气能可再生能源供暖通风工程安装完毕后,应进行系统调试与竣工验收。
- 6.1.2 《通风与空调工程施工质量验收规范》GB 50243 和《建筑给水排水及采暖工程施工质量验收规范》GB 50242,对于系统验收与调试内容、调试与性能测试时间、测试参数、仪器仪表安装位置与精度等级等做了明确的规定;规范附录提供了验收与调试记录表和测试报告的编制格式,可参照执行。
- 6.1.3 系统调试、性能测试所使用的检测仪器和仪表应在使用检定合格或校准有效期内,精度等级和最小分度应满足工程性能测试的要求。

6.2 系统调试

- 6.2.1 系统调试工作由施工单位负责,施工单位或者委托有技术能力的企业进行 调试,由监理单位监督,设计单位与建设单位参与配合。
- 6.2.2 系统调试前,应制定系统调试方案,并应报送专业监理单位审核;试运行与调试应做好记录,调试结束后应提供完整的调试资料和报告。
- 6.2.3 按照本规范的规定完成系统调试与综合测试工作,调试与测试结果应符合设计文件的要求。
- 6.2.4 空气源热泵供暖系统调试
- 1 空气源热泵供暖系统的调试和试运行,应在施工完毕后,且具备正常供暖和供电的条件下进行。
- 2 空气源热泵供暖系统的调试和试运行包括水压试验、冲洗试验、系统设备 单机试运行、水系统和风系统的调试和试运行、系统联合调试和试运行。
- 3 水压试验应符合现行国家标准《建筑给水排水及采暖工程施工质量验收规范》GB 50242 的相关要求,并符合下列规定:
- (1) 水系统的阀门、散热器、风机盘管、换热设备和分集水器等应进行强度和严密性试验;
 - (2) 水系统管路应按照下列要求进行水压试验并记录试验结果:

水压试验应在管道安装完成并经检查符合设计要求后进行;

冬季进行水压试验时应采取可靠的防冻措施,试压完成后应及时将水排尽,必要时采用压缩空气吹扫低点处的存水;

水压试验水温应在 5℃~40℃之间,试验压力符合设计要求;辐射供暖盘管应在隐蔽前和隐蔽后分别进行水压试验。

- 4 冲洗试验应符合下列规定:
- (1) 应对水系统不同环路逐一进行冲洗试验,冲洗后应保证管路及设备中的水及冲洗液排尽:
- (2) 充水及防冻液应在系统冲洗和试压完毕后注入,防冻液浓度应满足防冻要求:
- (3) 防冻液可按照浓度或密度进行配置,配制过程中,应根据防冻剂产品 说明书的要求,采取相应的防护措施。
- 5 空气源热泵机组应进行单机试运行,单机试运行应满足设备技术文件的有关规定,做好试运行前的准备工作,试运行期间应详细记录机组的相关运行状态参数。
 - 6 水泵、风机和风机盘管等设备应进行单机试运行。
 - 7 水系统调试和试运行应符合下列规定:
- (1) 水系统的调试和试运行应在管道水压试验和冲洗试验、水系统各设备 单机试运行完成且合格之后进行;
 - (2) 供水干管流量测试结果与设计流量的偏差不应大于 10%。
 - 8 风系统的调试应符合下列规定:
 - (1) 应对风管进行严密性试验:
- (2) 应在风系统各设备部分单机试运行和风管严密性试验完成后进行风系统风量调试,总风量实际测试值与设计值的偏差不应大于 10%,各风口的实际测试值与设计值的偏差不应大于 15%。
 - 9 空气源热泵供暖系统联合调试与试运行应符合下列规定:
 - (1) 系统处于稳定运行状态;
- (2) 系统负荷不宜小于设计负荷的 60%, 运行机组负荷不宜小于其额定值的 80%:
 - (3) 联合试运行和系统性能检测时间不应小于8h;
 - (4) 机组的设定温度应与设计工况一致。
 - 10 空气源热泵供暖系统联合调试和试运行应对下列性能参数进行检测:
 - (1) 室内空气温度:
 - (2) 机组进出水温度;
 - (3) 机组电功率和耗电量:
 - (4) 相关联房间噪声值。

- 11 分布式空气源热泵集中供暖系统联合调试和试运行检测参数除满足
- 12 条规定外,还应对下列参数进行检测:
 - (1) 室外空气温度和湿度;
 - (2) 机组水流量;
 - (3) 水泵、辅助热源等耗电设备的电功率和耗电量;
 - (4) 系统供热量;
 - (5) 水泵的水流量和进出口压差。
- 13 空气源热泵供暖系统联合调试和试运行的检测结果应符合下列规定:
- (1) 室内空气温度满足设计要求;
- (2) 水系统供、回水温差检测值不应小于设计温差的 80%,测试流量与设计流量的偏差不应大于 10%;
- (3) 耗电输热比应符合设计要求与《公共建筑节能设计标准》GB 50189 的 规定:
- (4) 风机单位风量耗功率应符合设计要求与《公共建筑节能设计标准》GB 50189 的规定;
- (5) 供暖房间噪声值应满足设计要求。如无设计要求,则应符合《民用建筑隔声设计规范》GB 50118 的有关规定:
- (6) 对于辐射供暖系统,辐射体表面平均温度应符合《辐射供暖供冷技术规程》JGJ142 中的有关规定。

6.2.5 蒸发冷却通风系统调试

- 1 蒸发冷却通风系统调试应在设备安装调试合格后进行。先进行设备单机调试,单机调试完毕后应根据设计指标进行联合试运转及系统调试。蒸发冷却通风机组与冷水机组单机调试包括以下内容:
- (1) 机组中的风机叶轮旋转应方向正确、运转平稳、无异常振动与声响, 电机功率应符合设备技术文件的规定。在额定转速下连续运行 2h,滑动轴承外 壳最高温度不得超过 70℃,滚动轴承不得超过 80℃;
- (2)水泵叶轮旋转应方向正确,无异常振动与声响,紧固连接件无松动, 电机功率应符合设备技术文件的规定。在额定转速下连续运行 2h,滑动轴承外 壳最高温度不得超过 70℃,滚动轴承不得超过 75℃;
- (3)间接蒸发冷却冷水机组、蒸发冷却空调机组试运行不应小于 2h,运行应稳定、无异常振动,噪声应符合设备技术文件的规定;
 - (4) 机组补水、泄水、排污水阀的操作应灵活、可靠,信号输出应准确;
 - (5) 蒸发冷却通风机组直接段和冷水机组应无明显的带水、溅水现象,喷

嘴应能将水均布且无堵塞;

- (6) 蒸发冷却通风机组、冷水机组运行应稳定、无异常振动,噪声应符合设备技术文件的规定。
- 2 蒸发冷却通风系统调试前应先对系统进行渗漏检查。试验标准参考现行国家标准《通风与空调工程施工质量验收规范》GB 50243 的规定要求。
- 3 蒸发冷却通风系统的调试内容包括:温度、相对湿度、风量以及风压等的调试,满足参数要求。
 - 4 蒸发冷却通风系统联合试运转及调试应符合下列规定:
 - (1) 设备与主要部件的联动应符合设计要求,运行应正确,且无异常现象;
 - (2) 冷却通风末端各风口风量与设计风量的偏差不应大于 15%;
- (3) 水系统应冲洗干净,不含杂物,并应排除管道系统中的空气,系统连续运行应正常平稳;水泵的压力和水泵电机的电流不应出现大幅波动,空调冷水的总流量、主干管冷水流量测试结果与设计流量的偏差不应大于10%;
 - (4) 房间内空气的温湿度、噪声应符合设计要求;
- (5) 各种自动计量检测元件和执行机构应运作正常,且应正确显示系统的工作状态,设置连锁、自动调节、自动保护装置应能正确动作;
- (6) 多台间接蒸发冷却冷水机组运行时,各机组制冷量与水流量应达到均 衡一致。

6.3 竣工验收

- 6.3.1 工程竣工验收,应符合现行国家标准《建筑工程施工质量验收统一标准》 GB 50300 中的有关规定,各部分的质量验收均应合格,质量控制资料、有关安全和功能的检测资料应完整。
- 6.3.2 竣工验收应由建设单位(项目)负责组织,施工单位(含分项工程各系统分包专业公司)、设计单位、监理单位共同进行,并提供竣工验收记录。
- 6.3.3 竣工验收整理的归档及移交文件应符合现行国家标准《建设工程文件归档规范》GB/T 50328 的有关规定。
- 6.3.4 竣工验收资料,应具备下列文件:
 - 1图纸会审记录、设计变更通知书和竣工图;
- 2 主要设备、材料、成品、半成品和仪表的出厂合格证明及进场检(试)验报告;
 - 3设备、材料现场复检报告;

- 4隐蔽工程检查、验收记录;
- 5设备、管路的安装检验记录;
- 6水系统试压和冲洗记录:
- 7设备单机试运行记录;
- 8系统联合试运行与调试记录;
- 9 安全和功能检验的核查记录;
- 10 工程施工安装质量验收表。
- 6.3.5 空气源热泵供暖系统工程交付使用后,各系统施工专业公司应对使用方进行交底或使用培训,工程质保期不应少于两个供暖期。
- 6.3.6 蒸发冷却通风系统工程竣工验收应按下列规定进行观感质量检查检验,并提供观感质量检查检验记录:
- 1风管的表面应平整、无损坏,风管间、风管与设备或调节装置的连接应无明显缺陷:
- 2 风口表面应平整,颜色一致,安装位置应正确,风口可调部件应能正常动作;
 - 3系统各类调节装置安装应正确牢固,调节灵活,操作方便;
 - 4蒸发冷却设备连接的管道、阀门及仪表安装位置正确,系统无渗漏;
- 5 蒸发冷却设备的软性接管位置应符合设计要求,接管正确、牢固,气流顺畅;
- 6 蒸发冷却设备机组外表平整光滑、接缝严密、组装顺序正确,喷淋蒸发系统无泄漏;
 - 7 蒸发冷却设备、风机、水泵等输配设备的安装应正确、正确牢固:
- 8 风管、部件、管道及支架的油漆附着应牢固,漆膜厚度应均匀,油漆颜色与标志应符合设计要求:
- 9 绝热层的材质、厚度应符合设计要求,表面应平整、无断裂和脱落,室外防潮层或保护壳应顺水搭接、无渗漏:
 - 10 蒸发冷却设备不应有水从设备机体内流出。

6.4 运行维护

6.4.1 根据系统的规模、复杂程度和运行维护管理工作量的大小,设置运行管理 部门和运行管理岗位,建立相应的运行管理和维修班组,建立、健全管理和运维 人员的培训、考核制度和过程档案,购置必要的维护维修设备和检测仪表。

- 6.4.2 运行管理部门应制定运行管理制度,包括值班、监控、巡检、运行操作、维护维修、事故报警和事件处理等制度,并建立运行档案,妥善保管设备和系统运行记录、定期检查和维护记录、设备和系统部件的维修和更换记录、事故分析和及其处理记录、年度运行总结和分析等资料。
- 6.4.3 空气源热泵供暖系统运行应遵循以下规定:
 - 1运行前,应对系统进行试运行,确保系统安全正常运行。
- 2应按工况变化调整运行模式和设定参数,并检测室内空气温度是否满足用户要求。
- 3运行时,空气源热泵机组、水泵和换热器等管路连接口应确保无渗漏。,设备、阀门、附件及管道的绝热外表面不应结露、腐蚀或虫蛀。
- 4运行时,应确保室外机进风与排风通畅,在排出空气与吸入空气之间不发生明显的气流短路。
 - 5系统运行期间,融霜水和冷凝水应排放合理。
 - 6系统运行噪音应符合相关规定。
- 7辐射供暖末端系统每年首次运行时,应确保阀门开启,、过滤器无堵塞,确保系统空气排尽。
- 8 风机盘管运行应根据供暖和空调要求,调节百叶,优化室内的气流组织,减少温度梯度。
 - 9系统运行时不应被遮挡。
- 10 分布式空气源热泵集中供暖系统运行时宜采用自动化调节,并应符合下列规定:
- (1) 应采用热源站处集中调节、建筑热力入口的局部调节和末端设备单独调节相结合的联合调节方式;
 - (2) 热源站宜采用等温差调节-质调节-间歇调节方式;
 - (3) 水泵官变频运行,并官采用最不利末端支路压差控制。
- 6.4.4 空气源热泵供暖系统维护应遵循以下规定:
- 1空气源热泵供暖系统运行期前后,应对主要设备进行定期维护保养和检查维修。
- 2 检修系统设备、附件和管道的表面是否整洁,无明显锈蚀。绝热层应无脱落和破损,无跑冒滴漏和堵塞现象。
- 3 系统自控设备和部件应定期检查、维护和检修,定期校验、维护传感器和 控制设备。

- 4 系统运转出现异响和振动应及时维修,室外换热器应定期清扫;并保持机组环境清洁。
- 5 管路系统应维护阀门正常工作,正常排气、补水和泄水;应定期清洗过滤器。
- 6 供暖前应对末端设备及连接部位进行严密性检修。地面辐射供暖加热管应两年冲洗一次。风机盘管百叶应调节灵活,定期清洗积水盘,清洁过滤网。
- 6.4.5 蒸发冷却通风系统投入使用后,应对其制冷量、送风量、耗水量以及循环水、补水水质进行定期检测。
- 6.4.6 蒸发冷却通风系统冬季运行前,应检查防冻措施,并应在暴雨,台风等灾害性气候到来之前进行防护检查及过后的检查维修;
- 6.4.7 蒸发冷却通风系统每年至少做一次检修,机组以及芯体表面应保持清洁。

7 性能测试与评价

7.1 基本规定

空气能供暖通风系统在竣工调试完成后,宜进行系统能效测试并出具系统能效测试报告。受季节影响未进行的系统能效检验项目,可在保修期内补做。

7.2 空气源热泵供暖系统评价

7.2.1 一次能源利用率

计算公式如下: PER=Q/Q₀=COP·ee

式中, Q—供热总得热量(W);

 O_0 —机组耗电量换算成的一次能源热值(W);

ee—电力发电效率。

对于电驱动热泵机组,上述 COP 为考虑压缩机,水泵,风机等系统总耗电量而得出的系统 COP。

7.2.2 可再生能源贡献率

计算公式如下: $F_a=Q_a/Q=1-1/COP$

式中, Q_a 一从空气中获得的热量(可再生能源贡献量)(W);

O-空气源热泵系统总产热量(W)。

7.2.3 系统费效比

计算公式如下: SCE=I/E

式中: I-投资增量;

E一系统正常使用寿命期内的总节能量(kW/h)。

表示可再生能源系统的增量投资与系统在正常使用寿命期内的总节能量的 比值,即利用可再生能源节省每千瓦常规能源的投资成本。

7.2.4 其他国家相关能效指标

除上述一次能源利用率等已提及的相关指标,可根据需要参考国家其他相关能效标准对空气源热泵供暖系统进行评价。

7.3 蒸发冷却通风系统评价

- 7.3.1 蒸发冷却通风系统管理的综合评价应包括运行效果评价和运行管理评价两部分。
- 7.3.2 蒸发冷却通风系统运行效果宜进行综合评定。
- 7.3.3 蒸发冷却通风系统管理评价总分及相关指标应参考《空调通风系统运行管理标准》GB 50365 中空调系统运行管理综合评价有关内容.
- 7.3.4 应按蒸发冷却通风系统的温度、湿度、空气洁净度、气流组织及新风量和噪声等方面效果的要求结合管理水平进行多方面性能等级的综合评定。评定结果应分为 5 个等级,水平由低到高依次为 1A(A)、2A(AA)、3A(AAA)、4A(AAAA)、5A(AAAAA)。
- 7.3.5 蒸发冷却通风系统运行管理的综合评价可由专家组或专业机构进行。

附录 A: 西藏自治区不同地区海拔

地级市	海拔/m		
	城关区	3660	
	堆龙德庆	3650	
	达孜	3700	
₩ 井.	当雄	4285	
拉萨市	林周	3760	
	墨竹工卡	3815	
	尼木	3820	
	曲水	3590	
	乃东	3560	
	扎囊	3570	
	贡嘎	3570	
	琼结	3750	
	曲松	3888	
中學神区	桑日	3570	
山南地区	措美	4130	
	洛扎	3865	
	加查	3260	
	隆子	3878	
	错那	4350	
	浪卡子	4470	
	巴宜区	2995	
	工布江达	3420	
	朗县	3100	
林芝地区	米林	2938	
	波密	2730	
	察隅	2330	
	墨脱	1100	
口喀Ш뉴다	桑珠孜区	3840	
日喀则地区	仁布	3880	

	拉孜	4020
	南木林	4002
	白朗	3897
	江孜	4020
	萨迦	4330
	昂仁	4320
	定日	4320
	谢通门	3990
	康马	4290
	定结	4210
	仲巴	4585
	亚东	2940
	吉隆	4130
	聂拉木	3750
	萨嘎	4485
	岗巴	4580
	卡若	3250
	江达	3550
	康马 定结 仲巴 亚东 吉拉 表拉嘎 岗巴 卡若 江 页觉 芒康 察雅 左 页 八宿 丁青 类乌齐 洛隆	3615
	芒康	3865
	察雅	3170
昌都地区	左贡	3805
	八宿	3275
	丁青	3870
	类乌齐	3800
	洛隆	3650
	边坝	3650
	色尼	4510
	嘉黎	4505
计学区	比如	3910
那曲地区	聂荣	4610
	索县	3990
	巴青	4150

DB54/T 0447-2025

	安多	4690
	申扎	4680
	班戈	4715
	尼玛	4530
	双湖	4920
阿里地区	噶尔	4280
	日土	4255
	札达	3730
	普兰	3880
	革吉	4510
	改则	4425
	措勤	4660

本标准用词说明

- 1为便于在执行本规范条文时区别对待,对要求严格程度不同的用词说明如下:
 - 1)表示很严格,非这样做不可的:
 - 正面词采用"必须",反而词采用"严禁";
 - 2)表示严格,在正常情况下均应这样做的:
 - 正面词采用"应",反面词采用"不应"或"不得";
 - 3)表示允许稍有选择,在条件许可时首先应该这样做的:
 - 正面词采用"宜",反而词采用"不宜";
 - 4)表示有选择,在一定条件下可以这样做的采用"可"。
- 2条文中指明应按其他有关标准执行的写法为:"应符合……的规定"或"应按……执行"。

引用标准名录

下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

- GB 50155 供暖通风与空气调节术语标准
- GB 55015 建筑节能与可再生能源利用通用规范
- GB 50174 数据中心设计规范
- GB 50189 公共建筑节能设计标准
- GB 50352 民用建筑设计统一标准
- GB 50019 工业建筑供暖通风与空气调节设计规范
- GB/T 50801 可再生能源建筑应用工程评价标准
- GB 50365 空调通风系统运行管理标准
- GB 21455 房间空气调节器能效限定值及能效等级
- GB 50242 建筑给水排水及采暖工程施工质量验收规范
- GB 50243 通风与空调工程施工质量验收规范
- GB/T 25127.1 低环境温度空气源热泵 (冷水)机组 第1部分: 工业或商业用及类似用途的热泵(冷)机组
- GB/T 25127.2 低环境温度空气源热泵(冷水)机组 第 2 部分: 户用及类似用 途的热泵(冷水)机组
 - GB/T 25860 蒸发式冷气机
 - GB/T 30192 水蒸发冷却空调机组
 - GB 50411 建筑节能工程施工质量验收标准
 - GB 50738 通风与空调工程施工规范
 - GB 50118 民用建筑隔声设计规范
 - GB 37480 低环境温度空气源热泵(冷水)机组能效限定值及能效等级

- GB/T 7725 房间空气调节器
- GB/T 29044 采暖空调系统水质
- GB 50274 制冷设备、空气分离设备安装工程施工及验收规范
- GB 50303 建筑电气工程施工质量验收规范
- GB 50736 民用建筑供暖通风与空气调节设计规范
- GB 51348 民用建筑电气设计标准
- GB/T 25857 低环境温度空气源多联式热泵(空调)机组
- GB 21454 多联式空调(热泵)机组能效限定值及能效等级
- GB/T 14294 《组合式空调机组》
- T/CECS 564 空气源热泵供暖工程技术规程
- JGJ 342 蒸发冷却制冷空调系统工程技术规程
- T/DZJN 10 数据中心蒸发冷却空调技术规范
- T/DZJN 27 数据中心蒸发冷却空调设备
- T/DZJN 81 数据中心蒸发冷却水质标准
- T/DZJN 250 数据中心蒸发冷却工程验收标准
- JB/T 12841 低环境温度空气源热泵热水机
- DB23/T 3297 严寒地区空气源热泵供暖系统技术规程
- CJJ 34 城镇供热管网设计规范
- CJJ/T 81 城镇供热直埋热水管道技术规程
- JB/T 13573 低环境温度空气源热泵热风机
- RISN-TG039-2021《户式空气源热泵供暖应用技术导则》
- JGJ 142 辐射供暖供冷技术规程
- JGJ1 74 多联机空调系统工程技术规程
- JGJ/T 260 采暖通风与空气调节工程检测技术规程

JGJ/T 177 公共建筑节能检测标准

CQC 3171 清洁能源供暖系统节能认证技术规范

JGJ/T 132 居住建筑节能检测标准

西藏自治区工程建设地方标准

建筑空气能供暖通风技术标准

条文说明

编制说明

西藏自治区地方标准《建筑空气能供暖通风技术标准》经西藏自治区市场监督管理局根据《关于下达 2022 年第二批推荐性地方标准制修定计划的通知》公告批准立项。本标准在编制过程中,编制组进行了广泛的调查研究,认真总结工程实践经验,参考有关国内标准和国外先进标准,并在广泛征求意见的基础上,对主要问题进行了反复讨论、协调,最终确定各项技术要求。

为了便于广大设计、施工、科研、学校等单位有关人员在使用本标准时正确理解和执行条文规定,《建筑空气能供暖通风技术标准》编制组按章、节、条顺序编制了本标准的条文说明,对条文规定的目的、依据以及执行中需注意的有关事项进行了说明。但是,本条文说明不具备与标准正文同等的法律效力,仅供使用者作为理解和把握标准规定的参考。

1 总则

- 1.0.1 习近平主席在第七十五届联合国大会一般性辩论的讲话表示,中国二氧化碳排放力争于 2030 年前达到峰值,努力争取 2060 年前实现碳中和。碳达峰、碳中和目标设立加速推动我国经济社会发展,向全面绿色低碳转型。《国民经济和社会发展第十四个五年规划和 2035 年远景目标纲要》进一步明确了未来一段时期绿色低碳发展的目标和举措,坚持绿色发展,促进人与自然和谐共生。建筑节能与可再生能源的开发利用是建筑实现双碳目标的基本路径,西藏自治区是青藏高原的主体部分,平均海拔 4000 米以上,太阳辐射强、日照时间长、太阳能资源丰富,空气干燥,蕴含着丰富的空气能,因地制宜地开发利用空气能可再生能源资源,对于建筑节能减排具有重要意义。
- 1.0.2 在西藏自治区,利用干燥的室外空气中所蕴含的低品位热能驱动空气源热 泵机组制热的供暖系统、利用室内排风空气中所蕴含的热能的能量回收系统、利 用室外干空气的干湿球温度差驱动水分蒸发吸收热量来冷却空气的蒸发冷却通 风系统,用于民用建筑、数据中心以及农业建筑物和构筑物的供暖通风系统等设 计、施工、调试、验收与运行维护均属于本标准适用的范围。
- 1.0.4 由于本标准为建筑空气能供暖通风工程的专业性技术标准,根据国家主管部门有关编制和修订工程建设标准、规范等的统一规定,为了精简标准内容,凡其他全国性标准、规范等已有明确规定的内容,除确有必要者以外,本标准均不再设具体条文。本条文的目的是在强调执行本标准的同时,还应贯彻执行其他相关标准、规范等的有关规定。

2 术语和定义

2.0.2 西藏自治区是青藏高原的主体部分,平均海拔 4000 米以上,太阳辐射强、日照时间长、太阳能资源丰富,空气干燥,蕴含着丰富的干空气能,因此本标准中对空气能和干空气能统称为空气能。

3 空气能供暖通风系统设计

3.1 基本规定

- 3.1.1 西藏自治区在建筑气候分区上归属于多个区域,不同地区海拔高度差别大,造成了空气能资源差别大,因此应统筹考虑所在地区空气能资源条件和项目自身的资源条件。
- 3.1.2 除了项目所在地区的空气能资源条件,项目本身由于余热资源条件、系统使用时间、负荷特征和投资规模等特征,空气能为系统提供的能源利用率和费效比不同,可根据项目特点进行可行性论证。

3.2 空气源热泵供暖系统设计

3.2.1 热负荷计算

- 1 空气源热泵供暖系统的基本热负荷应下列根据建筑物散失和获得的稳定热量进行确定,具体可参见《民用建筑供暖通风与空气调节设计规范》GB50736或《工业建筑供暖通风与空气调节设计规范》GB50019空气源热泵供暖系统不同于集中式供暖系统,具有分散式供暖和间歇式运行的普遍特征,因此应考虑间歇运行和户间传热等因素。
- 4 此部分计算同样适用于西藏自治区地方标准《建筑供热地热能利用技术标准》,并结合西藏自治区地方标准《民用建筑太阳能应技术规程》进行相关可再生能源的利用。

3.2.2 空气源热泵机组选型

1 现行空气源热泵产品标准《低环境温度空气源热泵(冷水)机组》GB/T 25127.1~2、《低环境温度空气源多联式热泵(空调)机组》GB/T 25857、《低环境温度空气源热泵热风机》JB/T 13573 等均属于低环境温度产品,主要适用于建筑热工分区中的寒冷地区,适用于严寒地区的产品标准尚在研发中。西藏自治区在建筑气候分区上归属于多个区域,因此在设备选用过程中根据热工区划分参考对应国家标准或行业标准及相关规范,其中划分依据参考《民用建筑设计统一标准》GB50352。空气源热泵以室外空气中的空气能为低温热源,在不同海拔地区空气密度不同,相同型号的空气源热泵产品在不同海拔地区在相同风量下空气能不同,因此应考虑海拔修正。

其中,表 3-2 是在不同设计温度下对应不同海拔的修正。另外,海拔高度在 0m 时没有变化,是因为以 0m 海拔高度为基准值进行其他海拔的修正,表中的 数值为修正系数。

6 空气源热泵是靠吸收室外空气中的低位热能来制热的,因此室外机一定要安装在通风的地方;对于集中供暖系统,通常需要多个模块进行联合运行,热泵机组的蒸发器模块往往以阵列的形式在室外布置,在冬季供暖运行时空气源热泵机组换热后所排出的低温空气回流入阵列中心区域,阵列中心区域的空气场温度远远低于环境大气温度,在机组阵列中形成冷岛效应,使阵列中心区域的热泵机组在较低蒸发温度下运行,而空气源热泵蒸发器的换热性能受其外围空气场的影响很大,冷岛效应的存在降低了热泵机组在冬季供暖运行的效率,造成了热泵机组运行费用高和出力不足。

3.2.5 末端设计

3.2.5.2 根据《民用建筑供暖通风与空气调节设计规范》GB50736 规定: 散热器供暖系统采用热水作为热媒; 散热器集中供暖系统宜按 75 /50℃连续供暖进行设计,且供水温度温不宜大于 85℃,供回水温差不宜小于 20℃。考虑到空气源热泵机组 COP 值受到冷凝温度影响,制热温度越低机组 COP 值越高,在低环温下不宜采用较高的制热温度,因此空气源热泵集中供热热水系统不宜采用散热器作为供暖末端,散热器供暖系统供水温度在条件运行范围内宜选择高温、大温差运行,供回水温差应由设计确定合理的温度和温差。

3.3 蒸发冷却通风系统设计

- 3.3.1 蒸发冷却技术利用干空气能来获得冷量的冷却方式,气体循环量较大,采用蒸发冷却技术的场所,应具有相对较低的室外环境温度、清洁的空气品质和充足的水源。直接蒸发冷却是通过空气与水直接接触实现两者温度同时降低的技术,根据布水形式可分为高压喷雾-滴水填料式直接蒸发冷却通风机组和滴水填料式直接蒸发冷却通风机组。直接蒸发冷却机组,根据布水形式可分为高压喷雾—滴水填料式和滴水填料式。如要求较低的含湿量或比焓时,可选用间接-直接蒸发冷却机组,间接蒸发冷却作为对新风的预冷器使用,间接—直接蒸发冷却机组是室外空气经间接蒸发冷却器(外冷或内冷)进行一级或者两级等湿预冷后,经过填料发生直接蒸发冷却等焓降温,处理至送风状态点后送入室内,常见的间接一直接蒸发冷却机组有管式、板翅式、表冷式等形式。
- 3.3.13 蒸发式冷凝器将冷却塔和冷凝器"合二为一",以空气和水作为冷却介质,

其原理图如图 1 所示。蒸发式冷凝器主要由喷淋装置、风机、换热盘管、水箱、循环水泵、挡水板等组成。工作时,启动水泵和风机,此时水箱中的水经过水泵的抽吸作用通过喷嘴喷出,淋在换热盘管表面,形成均匀的水膜;空气由进风口进入,由于风机作用,强迫掠过盘管表面后排出。空气在盘管表面与水膜接触,水膜和空气在温度差和水蒸气分压力差的共同作用下进行热质交换,发生直接蒸发冷却过程,水膜表面温度被降低,然后通过换热盘管的导热作用,冷却管内介质,使高温高压的制冷剂蒸汽冷凝成低温的制冷剂液体。冷凝热被管外侧空气通过风机排到外界。

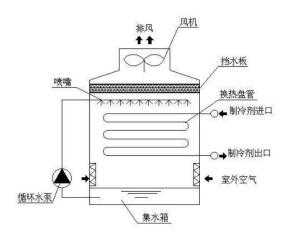


图 1 蒸发式冷凝器原理图

- 3.3.5 间接蒸发冷却机组应根据室外空气的湿球温度以及干球温度的变化,切换运行模式
 - 1干模式: 空气热交换自然冷却, 采用高效空气热交换器的换热方式:
- 2湿模式:蒸发冷却制冷,采用水喷淋蒸发冷却降温+高效热交换器换热方式:
- 3 复合模式:干模式蒸发冷却、湿模式蒸发冷却、机械制冷三种模式中的任何两种或者三种模式复合利用。
- 3.3.12 因海拔高度和大气密度的影响,海拔较高的地区的机组选型与标准状态下的区别很大。海拔对大气压、温度、空气密度的影响见 2013ASHRAE Handbook Fun-damentals 第 1 章。常规的设备选型表及阻力计算图表等都是按标准状态下的空气体积流量编制的;而工程实际所在地的海拔越高,空气密度越小,系统所需送风量(体积流量)就越大。而蒸发冷却空调设备的效率会随风量、风速、气水比的改变而改变,因此厂家应给出工程实际所在地海拔高度下的设备性能(即实际效率、功率、送风量等)。

按照当地室外设计计算参数,可以得出质量流量送风量。工程所在的实际地点与所选用的室外设计计算参数相比,如果海拔相差较大的两个工程共用同一组室外

设计计算参数,由于海拔升高造成空气密度的减小,相同质量流量的情况下,海拔每升高 1km,宜在计算送风量(体积流量)的基础上增加 10%,若不进行修正会造成送风量不足的情况。

对于风机来说,若转速不变,则它的体积风量不变。由于密度不同,其全压和功率会发生变化。由于当全压发生变化时,管路系统的阻力也随之变化,因此,在实际工程设计中,当气体密度、温度及大气压发生变化时,对通风机的风量、全压和阻力等都无需修正,只对风机功率进行修正,由《实用供热空调设计手册》可得,海拔每上升1000m,电动机出力减小近10%。如果不经过修正,采用标准工况下选择的风机可能无法在高海拔地区正常运行。

3.4 机械通风和自然通风

3.4.1 机械通风

1 机械送风系统进风口的位置:为了使送人室内的空气免受外界环境的不良影响而保持清洁,因此规定把进风口布置在室外空气较清洁的地点。

为了防止排风(特别是散发有害物质的排风)对进风的污染,进、排风口的相对位置,应遵循避免短路的原则;进风口宜低于排风口 3m 以上,当进排风口在同一高度时,宜在不同方向设置,且水平距离一般不宜小于 10m。用于改善室内舒适度的通风系统可根据排风中污染物的特征、浓度,通过计算造当减少排风口与新风口距离。

为了防止送风系统把进风口附近的灰尘、碎屑等扬起并吸人,故规定进风口下缘距室外地坪不宜小于 2m,同时还规定当布置在绿化地带时,不宜小于 1m。

3.4.2 自然通风

1 自然通风进排风口或窗扇的选择:为了提高自然通风的效果,应采用流量系数较大的进排风口或窗扇,如在工程设计中常采用的性能较好的门、洞、平开窗、上悬窗、中悬窗及隔板或垂直转动窗、板等。

供自然通风用的进排风口或窗扇,一般随季节的变换要进行调节。对于不便 于人员开关或需要经常调节的进排风口或窗扇,应考虑设置机械开关装置,否则 自然通风效果将不能达到设计要求。总之,设计或选用的机械开关装置,应便于 维护管理并能防止锈蚀失灵,且有足够的构件强度。

严寒寒冷地区的自然通风进排风口,不使用期间应可有效关闭并具有良好的

保温性能。

3 进风口的位置: 夏季由于室内外形成的热压小,为保证足够的进风量,消除余热、提高通风效率,应使室外新鲜空气直接进入人员活动区。自然进风口的位置应尽可能低。参考国内外有关资料,本条将夏季自然通风进风口的下缘距室内地坪的上限定为 1.2m。参考美 ASHRAE 标准,自然通风口应远离已知的污染源,如烟囱、排风口、排风罩等 3m 以上。冬季为防止冷空气吹向人员活动区,进风口下缘不宜低于 4m,冷空气经上部侧窗进入,当其下降至工作地点时,已经过了一段混合加热过程,这样就不致使工作区过冷。如进风口下缘低于 4m,则应采取防止冷风吹向人员活动区的措施。

4 监测与控制

4.1 基本规定

4.1.8 为了确保人民群众温暖过冬,同时推进数字中国和行业自律建设。相关工程基本信息和实时运行数据应上传至西藏自治区统一管理平台。

4.3 蒸发冷却通风系统监测与控制

4.3.4 应用于空调系统的直接蒸发冷却机组的循环水质直接影响空调房间内的空气质量,因此要求对菌落总数等传播细菌、危害人身健康的指标进行监测、化验。

6 调试、验收与运行维护

6.1 基本规定

6.1.3 本条对系统调试和性能检测所用的仪器、仪表性能和溯源要求进行了规定,同时按照计量器具检定规程的要求,在开展系统调试和性能测试工作前送计量部门鉴定或校准实验室校准,仪器精度可参见表 5。

表 5 实验仪表准确度

测量参数	测量仪器	测量项目	仪表准确度

温度	水银温度计、电阻温度计、热电偶温度计	空气进出口干球温 度、水温、换热设备 进出口温度	0.1℃	
压力	微压计(倾斜式、补 偿式可自动传感式)	空气静压和动压	1Pa	
	水压表	喷水段喷水压力	2%	
	大气压力计	大气压力	2hPa	
水量	流量计、重量式或容 量式液体定量计	水量	1%	
风量	皮托管			
风速	风速仪		0.5 级	
电压	电压表	电参数		
电流	电流表			
功率	功率表			
噪声	声级计	机组噪声	0.5dB (A)	
时间	秒表	凝结水量等	0.1s	
注:表中%指被测量值的百分数。				

6.3 竣工验收

6.3.2.5 本条规定了外观质量检查和风管、部件及管道的支、吊架形式、位置及间距的等观感质量检验要求,判别标准可依据现行国家标准《通风与空调工程施工质量验收规范》GB 50243 的相关规定。

7 性能测试与评价

空气能属于可再生能源,用于建筑供暖、冷却通风和排风热回收系统,可以 降低建筑能耗,增加建筑可再生能源利用比例,减少建筑碳减排,宜在系统调试 完成后,进行系统能效检测,出具系统性能检测报告。